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Abstract— We present a method for evaluating the quality
of a multi-scale or hierarchical image segmentation against a
reference single-scale segmentation, for comparing different seg-
mentation algorithms or fine-tuning an algorithm’s parameters
to a specific application.

I. INTRODUCTION

Image segmentation is usually performed as a preprocessing
step for many image understanding applications, for example
in some land-cover and land-use classification systems. A
segmentation algorithm is used with the expectation that it
will divide the image into semantically significant regions, or
objects, to be recognized by further processing steps. It is
however well known that semantically significant regions are
found in an image at different scales of analysis. For a high-
resolution aerial image, for example, at coarse scales we may
find fields, while at finer scales we may find individual trees
or plants. Parameters and thresholds in a typical single-scale
segmentation algorithm must be tuned to the correct scale of
analysis. However, it is often not possible to determine the
correct scale of analysis in advance, because different kinds
of images require different scales of analysis, and furthermore
in many cases significant objects appear at different scales of
analysis in the same image.

In an attempt to overcome this problem, in recent years
there has been a trend toward multi-scale or hierarchical
segmentation algorithms [1], [2]. These analyze the image at
several different scales of analysis at the same time. Their
output is not a single partition, but a hierarchy of regions, or
some other data structure that captures different partitions for
different scales of analysis.

As with classical, single-scale, segmentation algorithms,
the need arises to evaluate the quality of a multi-scale seg-
mentation against a reference, in order to compare different
algorithms, and to select for an algorithm the parameters
which are optimal for a given application. Most current
segmentation evaluation methods [3], [4] handle only single-
scale segmentations, that is, partitions of an image. They
usually work by finding correspondences between points in
the reference and points in the edges of the regions given
by the segmentation. However, because multi-scale algorithms
can deliver arbitrarily fine segmentations —at the finer end of
the scale range— the concepts of “correspondence between
reference points and segmentation edge points” and of “dis-
tance between segmentation edge and reference edge” cannot

be easily transposed to the multi-scale case —in effect, at the
right scale, the segmentation is so fine that all reference points
are arbitrarily close to a segmentation edge.

We present a method for evaluating the quality of a multi-
scale or hierarchical image segmentation against a reference.
The reference segmentation is given as a set of edges of
two kinds, compulsory and optional. The method computes
two measures, a false detection (or comission) measure, and
a missed detection (or omission) measure, by considering
that a falsely detected segmentation edge is a bigger error
if it appears at a coarse scale of analysis; conversely, the
missed detection measure takes into account the fact that a
reference edge can be completely missed —by there not being
a corresponding segmentation edge— but also “nearly missed”
if only fine-scale corresponding segmentation edges are found.
This assumes that the most visually salient edges are found at
the coarsest scales, which is the case. These two measures can
be minimized jointly, or an aggregate such as their average can
be calculated. We have found that they can be used to compare
two different multi-scale segmentations of the same image.

This paper is structured as follows: In section II the quality
measures are described in detail. Following that, section III
presents examples of using this measure to study the behavior
of a segmentation algorithm. Some concluding remarks are
given in section IV.

II. QUALITY MEASURES

The procedure to compute the segmentation quality mea-
sures operates by searching for pixels belonging to segmenta-
tion edges and for reference pixels. The first step is therefore
to convert the inputs into a suitable discrete (pixel based) form.

The segmentation reference is given as two sets of segments,
one for the compulsory edges and one for the optional edges.
A rasterization algorithm —such as Bresenham’s line drawing
method— is applied to convert these sets of edges into two sets
of pixels. Note that information about what edge each pixel
belongs to is lost. Let D ⊂ Z

2 be the usually rectangular image
domain. Pixels coordinates are elements of D. Let Rc ⊂ D be
the set of pixels given by the compulsory reference edges. Let
Ro ⊂ D be the set of pixels given by the optional reference
edges, and R = Rc ∪ Ro.

The hierarchical or multi-scale segmentation must also be
converted into a flat, discrete, representation. Guigues [1] and
others suggest that multi-scale segmentations should be causal,
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i.e., segmentation edges found at coarser scales must have
corresponding edges at finer scales. When corresponding finer
edges have exactly the same position as the coarser edges,
as is the case in Guigues’ algorithm, the flattening technique
described in [5] can be used: Each edge e ∈ E can be found
in segmentations at a given coarsest scale λ+

E(e) and at all
finer scales. The edge e is rasterized and converted to a set of
pixels, p(e) ⊂ D. Let S = ∪e∈Ep(e). For each pixel s in S,
its coarsest scale is computed as

λ+
S (s) = max{λ+

E(e) : s ∈ p(e), e ∈ E}. (1)

However, the behaviour of λ+
E(e) is highly dependent on

the specific segmentation technique and parameter set used.
To avoid this, we use not λ+

S (s) but this transformation: All
values of λ+

S are sorted in decreasing order, keeping repeated
values. Then each is replaced by the exponential of its rank
—the rank being 0 for the largest value of λ+

S and |S| − 1 for
the smallest; repeated values are given the rank of their first
occurence— as

w+(s) = e−α·rank(λ+
S (s)), (2)

where α is a user-defined parameter.
In other causal algorithms where the finer corresponding

edge can have a different position from that of the coarser
edge, each edge e can be seen to keep its position between
scales λ−

E(e) and λ+
E(e). We can then correspondingly define

λ−
S , w−, and, in the following discussion, use w = w+ −w−

instead of w+.

Computing the missed detection and false detection mea-
sures involves searching in small circular neighborhoods of
pixels, of fixed radius ε. The neighborhood radius ε is used as
a distance threshold when determining if a segmentation pixel
and a reference pixel could correspond and, therefore, it must
be set to take into account positional accuracy in the reference
and acceptable positional errors in the segmentation edges,
and must keep the same value for all tests in a comparison of
segmentations.

Given the R and Rc reference sets, the S segmentation set,
the weight w+ map, and the neighborhood radius ε, the two
quality measures are defined as follows:

Let Bx be the ball in D centered on x with radius ε,

Bx = {y ∈ D : ‖y − x‖ ≤ ε}. (3)

The missed detection penalty for a single pixel x ∈ Rc is
defined as

pm(x) =

{
1 − max

y∈Bx∩S
w+(y) if Bx ∩ S �= ∅,

1 if Bx ∩ S = ∅,
(4)

and the false detection penalty for a single pixel x ∈ S as

pf (x) =

{
0 if Bx ∩ R �= ∅,
w+(x) if Bx ∩ R = ∅. (5)

The global missed detection quality measure is

M =

∑
x∈Rc

pm(x)
card Rc

, (6)

and the global false detection quality measure is

F =
∑

x∈S pf (x)∑
x∈S w+(x)

. (7)

The missed detection —or omission— penalty is com-
puted for all pixels corresponding to compulsory ground truth
segmentation edges. The penalty is maximum, as in single-
scale segmentations, when no corresponding segmentation
edge pixel is found. However, a penalty is also given when
a corresponding pixel is found, and is lower as the pixel’s
scale is higher. Therefore, if the only segmentation pixel
corresponding to a ground truth edge is found at very fine
scales of analysis, it will be counted as an “almost-missed
detection”. On the contrary, if the corresponding pixel is very
salient and appears at coarse scales of analysis, the penalty
will be minimal. Conversely, the false detection or commission
penalty is computed for all pixels corresponding to detected
segmentation edges, that is, edges present in the segmentation
algorithm’s output. No penalty is given if a corresponding
ground truth edge is found. If none is found, the pixel’s scale
is used for the penalty. Therefore, very salient detected edges
that do no correspond to the ground truth have a high penalty,
while incorrectly detected edges at fine scales of analysis are
more tolerated.

This provides a two-dimensional measure of the quality of
a segmentation compared to a ground truth, (M,F ) ∈ [0, 1]×
[0, 1]. The closer M and F are to zero, the higher the quality.
These measures can be used to compare different segmentation
algorithms or parameter sets, but should not be taken to be
absolute quality measures —that is to say, a value of F = 0.5
does not mean that half the detected edges are false detections.
In order to find the optimal parameter set these two measures
can be minimized jointly, using the partial order

(M1, F1) ≤ (M2, F2) ⇐⇒ M1 ≤ M2 ∩ F1 ≤ F2, (8)

or an appropriate aggregate such as their average can be
calculated and that scalar value be minimized.

III. EXAMPLES

To demonstrate the presented quality measures, in this sec-
tion we will show how they vary as parameters in a multiscale
segmentation algorithm are modified. Guigues’ hierarchical
segmentation method [1] will be used; however, it is not the
goal of this paper to thoroughly evaluate the merits of the
algorithm itself or of specific parameter sets, but to show that
the quality measures presented in this paper can be used to do
so in a systematic way.

In all graphs shown in this section, the horizontal axis
corresponds to the “missed detection” measure M , and the
vertical axis to the “false detection” measure F . The closer to
the origin the measures, the higher the segmentation quality.

Fig. 1 and Fig. 2 show how the quality measures change
as we randomly modify a segmentation. In Fig. 1, random
values following a Gaussian law with increasing variance were
added to the segmentation weights w+(s) before evaluation.
In Fig. 2, the image segmentation was geometrically distorted



by adding a random offset —following a Gaussian law with
increasing variance— to the positions of endpoints of segmen-
tation edges E.

Fig. 3 shows the effect of using a feature of Guigues’ seg-
mentation algorithm that gives a higher penalty to segmenta-
tion edges not following image pixels of strong gradient mod-
ule —the basic Guigues’ segmentation algorithm is region-
based and uses the distribution of pixel values within each
segmentation region, and the shape of the region’s boundary,
but not the gradient at the region’s boundary. It can be seen that
making the contribution of that penalty smaller or larger has a
very limited effect on the resulting segmentation, suggesting
that this gradient-following penalty is actually redundant with
the basic Guigues method. The close-up in Fig. 4, where data
points obtained by increasing the contribution of this gradient-
based penalty are joined by lines, confirms that this penalty
produces only small random variations.

In contrast, Fig. 5 shows the effect of using different image
channels for the segmentation algorithm. Several tests are
shown, using, for example, the raw RGB channels, derived
color spaces (HSV, log-opponent chroma, CIE, . . . ) and tex-
tural features (gradient direction entropy, space orientation
histograms, . . . ). It can be seen that the choice of input
channels has a much more significant effect on the resulting
segmentation.

Fig. 6 shows two of the segmentations used in the graph
in Fig. 5. The source image is at the top; the segmentation
at the middle uses the value and hue components (combined
in polar form), and the CIE A and CIE U channels as input
channels, and corresponds to the data point shown with a large
circle in Fig. 5. The segmentation at the bottom uses a feature
based on Zhou’s scale-orientation histograms [6] (SOHs) and
the entropy of the local histograms of gradient directions [7]
as input channels, and corresponds to the data point shown
with a large triangle in Fig. 5. The first segmentation, which
is clearly better by visual analysis, has correspondingly better
results for both the M and the F measures.
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Fig. 1. Adding Gaussian perturbations to segmentation weights w+(s), for
several values of ε and increasing perturbation variance. The larger circles
show the results with no perturbation.
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Fig. 2. Adding Gaussian offsets to the positions of segmentation edge
endpoints, for several values of ε and increasing perturbation variance. The
larger circles show the results with no perturbation.
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Fig. 3. Modifying the weight of the gradient-following penalty, for several
values ε.
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Fig. 4. Modifying the weight of the gradient-following penalty, close-up for
ε = 4.
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Fig. 5. Using different color space components and textural features as input
to the segmentation. Shown for ε = 4. The larger circle (“VHA”) and triangle
(“ES”) mark the segmentations that are shown in Fig. 6.

IV. CONCLUSION

Multi-scale approaches have been used for image seg-
mentation for some time to avoid the problem of having
to select a globally valid scale of analysis before actual
image interpretation. In order to evaluate multi-scale image
segmentation algorithms and their parameter sets, a method
is needed to compare a segmentation to a ground truth.
However, current evaluation methods are not designed for use
in multi-scale segmentations. In this paper we propose a two-
dimensional quality measure that evaluates the comission and
omission errors of a multi-scale segmentation against a single-
scale ground truth. We show several examples of how these
measures behave with varying segmentation parameter sets.
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Fig. 6. Using different color space components and textural features as input
to the segmentation. Top: source image. Middle: segmentation with value, hue,
CIE A and CIE U channels. Bottom: segmentation with SOHs and direction
histogram entropy. Segmentations are shown by their w+ image, with darker
pixels corresponding to higher values of w+(s).
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